Global soil carbon projections are improved by modelling microbial processes

نویسندگان

  • William R. Wieder
  • Gordon B. Bonan
  • Steven D. Allison
چکیده

Society relies on Earth system models (ESMs) to project future climate and carbon cycle feedbacks. However, the soil C response to climate change is highly uncertain in these models1,2 and they omit key biogeochemical mechanisms3–5. Specifically, the traditional approach in ESMs lacks direct microbial control over soil C dynamics6–8. Thus, we tested a new model that explicitly represents microbial mechanisms of soil C cycling on the global scale. Compared with traditional models, the microbial model simulates soil C pools that more closely match contemporary observations. It also projects a much wider range of soil C responses to climate change over the twenty-first century. Global soils accumulate C if microbial growth efficiency declines with warming in the microbial model. If growth efficiency adapts to warming, the microbial model projects large soil C losses. By comparison, traditional models project modest soil C losses with global warming. Microbes also change the soil response to increased C inputs, as might occur with CO2 or nutrient fertilization. In the microbial model, microbes consume these additional inputs; whereas in traditional models, additional inputs lead to C storage. Our results indicate that ESMs should simulate microbial physiology to more accurately project climate change feedbacks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microbial models with data-driven parameters predict stronger soil carbon responses to climate change.

Long-term carbon (C) cycle feedbacks to climate depend on the future dynamics of soil organic carbon (SOC). Current models show low predictive accuracy at simulating contemporary SOC pools, which can be improved through parameter estimation. However, major uncertainty remains in global soil responses to climate change, particularly uncertainty in how the activity of soil microbial communities w...

متن کامل

Historical climate controls soil respiration responses to current soil moisture.

Ecosystem carbon losses from soil microbial respiration are a key component of global carbon cycling, resulting in the transfer of 40-70 Pg carbon from soil to the atmosphere each year. Because these microbial processes can feed back to climate change, understanding respiration responses to environmental factors is necessary for improved projections. We focus on respiration responses to soil mo...

متن کامل

Explicitly representing soil microbial processes in Earth system models

Microbes influence soil organic matter decomposition and the long-term stabilization of carbon (C) in soils. We contend that by revising the representation of microbial processes and their interactions with the physicochemical soil environment, Earth system models (ESMs) will make more realistic global C cycle projections. Explicit representation of microbial processes presents considerable cha...

متن کامل

Disentangling residence time and temperature sensitivity 1 of microbial decomposition in a global soil carbon model

12 Recent studies have identified the first-order representation of microbial decomposition as a 13 major source of uncertainty in simulations and projections of the terrestrial carbon balance. 14 Here, we use a reduced complexity model representative of current state-of-the-art models of 15 soil organic carbon decomposition. We undertake a systematic sensitivity analysis to 16 disentangle the ...

متن کامل

Differential controls on soil carbon density and mineralization among contrasting forest types in a temperate forest ecosystem

Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013